Fluid Pressure Measurement

Since static fluid pressure is determined by the fluid density and depth, the depth or height difference of a given liquid is commonly used for pressure measurement:

Pressure Calculation

Index

Pressure concepts
 
HyperPhysics***** Mechanics ***** Fluids R Nave
Go Back





Fluid Pressure Calculation


Discussion

Fluid column height in the relationship

is often used for the measurement of pressure. After entering the relevant data, any one of the highlighted quantities below can be calculated by clicking on it.

Pressure difference = density x g x height

If the fluid density is
= gm/cm^3 = kg/m^3
and the column height is
h = m = x 10^ m
h = ft
then the pressure difference is
= kPa
= lb/in^2
= mmHg= inches Hg
= atmos
= inches water= cm water
Index

Pressure concepts
 
HyperPhysics***** Mechanics ***** Fluids R Nave
Go Back





Atmospheric Pressure

The surface of the earth is at the bottom of an atmospheric sea. The standard atmospheric pressure is measured in various units:

The fundamental SI unit of pressure is the Pascal (Pa), but it is a small unit so kPa is the most common direct pressure unit for atmospheric pressure. Since the static fluid pressure is dependent only upon density and depth, choosing a liquid of standard density like mercury or water allows you to express the pressure in units of height or depth, e.g., mmHg or inches of water. The mercury barometer is the standard instrument for atmospheric pressure measurement in weather reporting. The decrease in atmospheric pressure with height can be predicted from the barometric formula.

The unit mmHg is often called torr, particularly in vacuum applications: 760 mmHg = 760 torr

For weather applications, the standard atmospheric pressure is often called 1 bar or 1000 millibars. This has been found to be convenient for recording the relatively small deviations from standard atmospheric pressure with normal weather patterns.

Force of atmosphere on an area.
Constituents of the atmosphere
Index

Atmospheric pressure demos

Pressure concepts
 
HyperPhysics***** Mechanics ***** Fluids R Nave
Go Back





Mercury Barometer

The mercury barometer and other manometer devices are reliable pressure measurement devices since fluid pressure depends only on fluid density and depth. The atmospheric pressure provides the force necessary to push the mercury up the evacuated tube. Even though it acts downward in the illustration, by Pascal's principle we know that the pressure acts in all directions and can force the mercury up the tube until its weight is enough to equal the force of the atmosphere.

Index

Pressure concepts
 
HyperPhysics***** Mechanics ***** Fluids R Nave
Go Back